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s u m m a r y

Constructed wetlands for water cleanup have been in use for several years and are promising for cost-
efficient remediation of large scale contamination. Within this study, flow conditions in layered vertical
soil filters used for remediation of contaminated groundwater were investigated in detail by special dis-
charge experiments and an attuned modeling study. Unsaturated water flow was measured in two ver-
tical flow constructed wetlands for contaminated groundwater treatment at a site in eastern Germany.
Numerical simulations were performed using the code MIN3P, in which variably saturated flow is based
on the Richards equation. Soil hydraulic functions based on Van Genuchten coefficients and preferential
flow characteristics were obtained by calibrating the model to measured data using self-adaptive evolu-
tion strategies with covariance matrix adaptation (CMA-ES). The presented inverse modeling procedure
not only provides best fit parameterizations for separate and joint model objectives, but also utilizes the
information from multiple restarts of the optimization algorithm to determine suitable parameter ranges
and reveal potential correlations. The sequential automatic calibration is both straightforward and effi-
cient even if different complex objective functions are considered.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Vertical flow constructed wetlands have been in use in domes-
tic wastewater treatment for several years (Baeder-Bederski et al.,
2004; Gross et al., 2007; Langergraber, 2008). They are imple-
mented for removal of dissolved organics and NHþ4 , phosphorus
(Lantzke et al., 1999), or fecal coliform bacteria (Baeder-Bederski
et al., 2005). It has been reported that such vertical flow beds are
extremely effective in removing suspended solids and biological
oxygen demand (BOD5), and for nitrification of ammonium during
all seasons (e.g. Brix and Arias, 2005). The application of vertical
flow constructed wetlands is also under investigation as a promis-
ing technology for on-site remediation of groundwater contami-
nated with aerobically degradable components. The major
argument for this method is the low maintenance effort it requires,
making it a very low cost water treatment technique. So far, these
wetlands have been commonly designed and implemented by
using simple rules of thumb such as the Austrian standard ÖNORM
B 2505, 1997 or the German standard ATV-A 262, 1997 (Haberl
et al., 2003) without considering and quantifying the processes
occurring inside such filters in detail. More recently, however, ef-
ll rights reserved.
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forts have been made to understand and quantify processes in pilot
facilities, including model development, testing, and application
(Cooper, 2005; Langergraber and Simunek, 2005; Werner and Kad-
lec, 2000; Langergraber, 2008).

Vertical soil filters are three phase systems allowing mass ex-
change among soil, water, and air. The chief goal is to enforce the
mutual transfer of the aquatic pollutants to other environmental
compartments and thereby accelerate cleanup. Compartment
transfer in wetlands may be used for remediation of contaminated
water through the release of fugitive gases to the atmosphere
(Walter and Heimann, 2000; Whalen, 2005), active or passive up-
take by plants (Nowack et al., 2006), precipitation or enhanced bio-
geochemical transformations (Brix and Arias, 2005).

A great advantage of vertical flow constructed wetlands is the
possibility to apply wastewater intermittently. This facilitates dy-
namic gas exchange with the atmosphere and delivers oxygen to
the contaminated water under either permanently unsaturated
conditions (transport by diffusion) or periodically changing water
saturation (transport by advection). The gas transport of oxygen
into the wastewater is crucial for the remediation efficiency of aer-
obic microbial degradation. To predict the biotransformation
capacity of vertical flow constructed wetlands, namely for the
capacity of oxygen input and biodegradation, it is necessary to
understand the flow processes that influence (i) water retention
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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time within the filter, as well as (ii) air and water saturation over
time. A fundamental task is therefore to envision variably satu-
rated flow in high temporal and spatial resolution.

Unfortunately, unsaturated water flow characteristics are not
easy to predict, as the general formulation by Richard’s equation
is non-linear. Within the common Van Genuchten approach, unsat-
urated water flow is inevitably linked to a set of empirical param-
eters that are hard to estimate. They can be obtained from the soil
water retention measurements of small scale probes or estimated
by inverse modeling at larger scales. The latter will be the focus
of this paper. In this process, field scale multi-layered soil filters
are intermittently supplied with water and the bottom discharge
is measured. Based on these measurements and tentative available
hydraulic characterization of the filters, soil models are set-up,
parameterized, and calibrated. The parameter estimation proce-
dure is adjusted to the specific features of this field case and car-
ried out by an innovative heuristic solver, so-called evolution
strategies with covariance matrix adaptation (CMA-ES, Hansen
et al., 2003). Special attention is drawn to quantifying and process-
ing measurement uncertainties when fitting the simulated dis-
charge curves to the measured values. First inspection indicates
preferential flow conditions in one of the filters, which is dealt with
by way of an extended simulation approach according to Mohanty
et al. (1997). The developed method of indirect parameterization of
hydraulic behavior in vertical flow constructed wetlands will be
essential for reliably predicting their water cleanup performance.

Langenreichenbach basins

The research pilot treatment plant Langenreichenbach is lo-
cated at a field site in Saxony, Germany and has been in operation
continuously since 2000. The pilot plant is used for the treatment
of domestic wastewater provided by the nearby municipal sewage
plant. Pre-treatment begins with a straw filter and continues with
the injection of this pre-treated water through 14 filters placed at
the site. The aim of the pre-treatment unit is to eliminate the sus-
pended solids and avoid clogging of the vertical and horizontal fil-
ters used later on to treat germs (fecal coliforms, helminth eggs)
and ammonia content in the water.

The vertical soil filters used in this study are composed of gran-
ular material with different grain sizes arranged in layers of vary-
ing configurations (Fig. 1). Typically, these soil filters are built up
by four layers: cover layer on top, main filter layer, intermediate
gravel (8
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Fig. 1. Schematic set-up of selected vertical flow
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layer, and bottom drainage layer. The cover layer, composed of
coarse material, facilitates water distribution over the entire filter
surface area and protects the surface of the main layer from ero-
sion. The intermediate layer, placed between the main layer and
the drainage layer, prevents the washing out of fine particles into
the drainage layer. To study the influence of two filter materials,
the main layers of seven Langenreichenbach basins were filled
with washed sand with a grain size of 0–2 mm (Heinrich Niemeyer
GmbH & Co KG, Sprotta, Germany), while the other seven filters
were filled with a mixture of expanded clay (Fibo Exclay Deutsch-
land GmbH, Lahmstedt, Germany) and sand. The expanded clay is
artificially fabricated material, composed of clays baked at very
high temperature (�1000 �C) to create light pellets of clay with
high specific surface and high porosity (Fig. 2a). The mixture was
specifically developed for comparative tests to examine the influ-
ence of different types of filter materials. The focus of this study
will be exclusively on two basins with different set-ups but mixed
main layers of the same material. These basins were selected out of
the 14 available filters due to their best credible measurement
accuracy. Furthermore, they have the advantage of two moderate,
but significantly different, loading intervals. This allows to cover a
bandwidth of hydraulic conditions, and so provide the chance to
most comprehensively describe flow within the materials they
share.

The surface area of each filter is 6.6 m2 (2.4 m by 2.75 m). Outlet
shafts with a cross section of 0.4 m2 are located at one corner of
each basin, reducing the effective area of the soil filters to 6.2 m2.
The two vertical soil filters used in this study for the calibration
of soil hydraulic properties are called basin A and basin B (Fig. 1).
Both basins are planted with Phragmites australis, and plant roots
are distributed through the entire soil filter profile. A 4-day mea-
surement period in March 2007 was chosen for evaluation. During
this period, controlled intermittent infiltration events were applied
that led to distinctly different flow behavior for the two basins.
There was no precipitation and minimal evaporation during the
considered time period, and thus these processes could be ne-
glected in the simulations.

The set-up of basin A is as follows (Fig. 1): on top there is a 5-cm
cover layer composed of gravel (8–16 mm diameter). The underly-
ing 60-cm thick main filter layer is comprised of expanded clay
(2–4 mm diameter), which has been crushed and mixed with sand
(0–2 mm diameter, Fig. 2a). A 10 cm thick intermediate layer of
gravel, 4–8 mm in diameter, intersects the main layer and a
-16 mm)
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constructed wetlands at Langenreichenbach.
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Fig. 2. Expanded clay pellets (a), sand (b) and gravel 16–32 mm (c) used in the field experiment of the two basins A and B.
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20-cm sump on bottom. The intermediate gravel lies on a perfo-
rated stainless steel plate, allowing water to drain into the sump.
Water was injected from the top through perforated pipes. These
pipes are additionally enveloped into 100-mm slit pipes (drainage
pipes) which are filled with main filter material, the clay/sand mix-
ture. The water that reached the bottom of the basin is dammed up
to a height of 10 cm in the sump, from where it was discharged to a
collector pipe in the outlet shaft. A flow rate measurement port
was located 5 cm from the distribution system on top. The outflow
rate was measured by automatic 5-L pots about 5 m away from the
basin. The sump had a minimal water level of about 10 cm. Sump
overflow occured when the water height in the sump was higher
than 10 cm.

Like basin A, basin B has a 5-cm cover layer on top. The main fil-
ter layer is also comparable to that of basin A, with same material
and vertical length. Different is the arrangement of the two drain-
age layers below the main layer: the drainage element in basin B is
built up by a 10 cm layer of gravel (8–16 mm diameter) and an
underlying 20 cm layer of gravel (16–32 mm diameter, Fig. 2c).
Water was injected from the top of the filter through a uniform
areal distribution system of perforated pipes (3 mm diameter holes
with a density of six holes per m2) and collected in the drainage
layer in a slotted pipe of 100 mm in diameter. The flow rate of
the inflow was measured with a magnetic inductive flow meter
after the metering pump prior to application to the filter and at
the outflow of the basin where the water collected by the collec-
tion pipes discharged. The same instrument was used for flow
measurements in the two basins. The basin presented a minimal
water level of 20 cm from bottom; thus the lowest gravel layer
was permanently water-saturated. When the water level exceeded
20 cm, overflow induced the discharge of the basin.

Measurement of water flow

The vertical soil filters were intermittently loaded with re-
peated waste water pulses, several per day of different temporal
distribution. Detailed information about the loading schedules of
both basins is listed in Table 1. As depicted in Fig. 3, both inflow
and outflow rates were measured. The time periods used for the
present study are considered as the most representative of normal
operating conditions of the basins, with two distinctly different
Table 1
Water injection strategies for the selected Langenreichenbach basins A and B.

Basin Volume of
injected water
per day (L)

Loading
pulses per
day (–)

Volume of water
injected per
pulse (L)

Duration of
the pulse
(min)

Loading
distribution
scheme

A 248 4 62 3.1 Uniform
intervals

B 248 8 31 1.55 Non-
uniform
intervals

Please cite this article in press as: Maier, U., et al. Calibration of hydraulic param
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loading conditions: (i) evenly distributed intervals of infiltration
roughly every 6 h in filter A and (ii) repeated, more irregular water
application with rapidly succeeding events and longer dry periods
according to a daily flow pattern in filter B. The flow rate during
waste water injection events was 20 L/min in all cases. The outflow
curves show a certain degree of variation although the inflow con-
ditions were controlled and regularly distributed during the period
of investigation. Implications will be discussed during the subse-
quent presentation of the calibration procedure.

Numerical model

Theory

The simulation of variably saturated water flow using the
numerical code MIN3P is described by the Richards equation,
which is implemented in MIN3P using the formulation (Mayer
et al., 2002):

SaSs
@h
@t
þ /

@Sa

@t
�r � ðkraKrhÞ � Q a ¼ 0 ð1Þ

with Sa as the aqueous phase saturation (–), SS the specific storage
coefficient (m�1), h the hydraulic potential (m), which equals pres-
sure head w plus gravitational potential z (h = w + z), / the porosity
(–), t time (s), K the tensor of hydraulic conductivity (m s�1), kra the
relative permeability (–) and Qa the source/sink-term (m3/s). Solu-
tion of the Richards equation (Eq. (1)) requires the definition of
functions linking pressure head w to saturation and relative perme-
ability. A well established relationship is provided by the empirical
Van Genuchten–Mualem approach (Mualem, 1976; Van Genuchten,
1980), which is given by the system of Eqs. (2)–(5):

kra ¼ Sl
ea 1� 1� S1=m

ea

� �mh i2
ð2Þ

Sa ¼ Sra þ
1� Sra

1þ awað Þn
� �m ð3Þ

m ¼ 1� 1=n ð4Þ

Sea ¼
Sa � Sra

1� Sra
¼ ha � hra

hsa � hra
ð5Þ

with Sea (–) as the effective aqueous saturation, Sra (–) the residual
saturation, wa matrix potential (m), l (–) a parameter of pore con-
nectivity, m (–), a (m�1) und n (–) empirical parameters, ha the ac-
tual aqueous, hra the residual and hsa the volumetric water content
at saturation for the soil, respectively.

Many approaches for implementation of preferential flow in
variably saturated porous media models have been described in re-
cent years (Šimůnek et al., 2003), of which the most advanced re-
quire the parallel consideration of two or more domains for the
same porous medium. These distinguish between ‘‘fast” (macro-
pore) and slow or stagnant pore space, and are coupled by kinetic
exchange terms (so-called non-equilibrium flow). These ap-
proaches, however, generally come along with disadvantages, such
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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Fig. 3. Infiltration events (top) and measured outflow hydrographs from March 8–11, 2007, with neglected initial phases and later periods which are used for model
calibration.
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as significantly increased computational demand and a number of
additional parameters which are hard to estimate under real world
conditions. The alternatives of composite hydraulic functions,
which increase hydraulic conductivity above a saturation thresh-
old, do not reproduce lateral non-equilibrium of wetting and flow
conditions, but are able to simulate rapid advances of seepage
water fronts which are commonly observed in the presence of pref-
erential flow. These approaches require only low computational
costs, which is essential if simulations have to be repeated. Such
a simplified equilibrium formulation for preferential flow is imple-
mented in the model using the approach of Mohanty et al. (1997).
This formulation necessitates only the two additional fitting
parameters j and wpf. Hydraulic conductivity K increases exponen-
tially if the pressure head within the unsaturated zone w exceeds a
certain threshold pressure head wpf:

KðwÞ ¼ KðwÞ þ j � ½eðw�wpf Þ � 1� ð6Þ

Parameter j denotes a scaling factor of dimension (m/s) that
determines the magnitude of preferential flow. The formulation
used in this study is described in Gérard et al. (2004).

Model set-up and initial parameterization

Water balance error in the measurements is estimated to be
±5%. In order to moderate the impact of this error, the measured
outflow data was scaled to fit the 248 L of daily infiltration in both
basins. In a preliminary sensitivity analysis, the influence of the
initial condition of water saturation within the filter, which is
not known in detail, was evaluated by variation of initial pressure
heads. The results showed that the outflow behavior depends on
the unknown initial condition for approximately the first 24 h of
simulation. This early time period is not taken into account for
the model fitting (Fig. 3) and thus is neglected in the remainder
of this paper.

The lower hydraulic model boundary condition is imple-
mented as a fixed pressure head. It is found to influence the out-
flow behavior in a way that pressure heads close to saturation
yield a relative permeability high enough to drain the lower
parts of the filter rapidly. In filter B, however, the water level
of the porous medium within the lowest gravel layer is known
to be 20 cm because of the outflow device; thus this value can
be directly applied to the lower boundary condition. In filter A,
the water stage in the sump is below the filter level, providing
a constantly unsaturated lower boundary condition. Its pressure
head is generally unknown and can hardly be deduced from the
Please cite this article in press as: Maier, U., et al. Calibration of hydraulic param
doi:10.1016/j.jhydrol.2009.02.032
soil filter measurements. When pressure head drops, unsaturated
hydraulic conductivity drops and the gradient increases in the
same manner, providing roughly the same flow rate under the
given conditions. If the lower boundary pressure head drops be-
low a certain value, however, the flow behavior becomes inde-
pendent of the boundary condition. This threshold pressure
head corresponds to the unsaturated hydraulic conductivity
equal to the Darcy velocity q at the low end of filter discharge.
During such temporally rather constant drainage conditions the
vertical hydraulic gradient approximates one, thus hydraulic
conductivity K will approximate q. This threshold value is found
to be roughly w = �0.5 m for the 8–16 mm gravel (top layer in
both filters and drainage layer in filter B) and �0.2 m for the
4–8 mm gravel, of which the latter value is being used as drain-
age layer in filter A. Consequently, this value is applied to the
bottom boundary conditions in filter A.

A relatively fine vertical discretization of 1 cm was chosen. The
time step was allowed to vary from a minimum value of 10�9 h up
to 0.05 h. It is adapted by the model automatically depending on
the stiffness of the hydrological problem to solve (Mayer et al.,
2002).

The gravel layer (8–16 mm) overlying the main filter material in
both basins is quickly passed by the infiltrating water due to its
much higher hydraulic conductivity. Hence this layer can be ex-
pected to have no significant influence on the overall flow behav-
ior. Nevertheless, it is inspected in more detail during the
calibration. The water transition from the expanded clay layer to
the underlying gravel may be delayed to some extent due to capil-
lary barrier effects when passing from the finer to the coarser
material (e.g. Ross, 1990). This is caused by the lower relative
hydraulic conductivity in the coarser material under low water sat-
uration. It should be noted that this delay will explicitly be ac-
counted for in the fitted model.

Soil hydraulic parameters for filter materials used at the
Langenreichenbach site were obtained from lab tests performed
on material of similar grain size at the Department of Soil Phys-
ics (UFZ) and from the literature. These parameters are shown in
Table 2. The values for the in situ conditions, however, cannot
exactly be deduced from these measurements. For example, the
main layer filter material is an aged mixture of expanded clay
and sand. Furthermore, to a certain extent all soil layers will
be interfused with plant roots. Therefore, an indirect method
of parameterization of variably saturated flow is required. The
applied automatic calibration procedure will be subsequently
presented.
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),



Table 2
Initial soil hydraulic parameters used for model simulation. Values in brackets are initial guesses and denote parameters subject to automatic calibration.

Parameters Expanded claya Expanded clay and sand Sanda Gravel a Gravel Gravelb

Particle size (mm) 2–8 2–4, 0–2 0–2 4–8 8–16 16–32
Van Genuchten parameter a (1/m) 9.76 (3.5) 4.5 8.5 (12) 14.5
Van Genuchten parameter n 1.34 (2.5) 4.59 9.8 (5) 2.68
Saturated hydraulic conductivity K (m/s) 0.00028 (0.00001) 0.000286 0.0013 (0.01) 0.17
Porosity 0.4 0.27 0.3 0.35 0.3 0.3

a Values provided by the Soil Physics Department, UFZ Halle, Germany.
b Langergraber (2001).
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Calibration procedure

The goal of this procedure is to adjust the MIN3P models to the
layered filters through the calibration of vital unknown or uncer-
tain parameters. Among these are the hydraulic parameters for
the mixture of elapsed clay and sand, as well as the specification
of the 8–16 mm gravel. This gravel type is implemented on top
of both basins and below the clay/sand core in filter B. Parameter
estimation problems of vadose zone models are reported to be
complex, potentially having multiple equally probable, non-unique
solutions and insensitive parameters (e.g. Hopmans and Šimůnek,
1999; Iden and Durner, 2007). This may be accentuated in case
of multiple layers. The fitting criteria, the time series of discharge
measurements, are integral signals, and thus it is hardly possible
to determine the impact of individual layers. Multiple layers may
be even considered as one homogeneous medium, for which a
combined Van Genuchten model can be calibrated (Abbaspour
et al., 2000; Bayer et al., 2005).

The Langenreichenbach basins, on the contrary, represent an
exceptional situation: for two different combinations of the filter
materials and under completely different hydraulic boundary con-
ditions, discharge measurements are available. During installation,
soil samples from the two different basins were taken and sieved.
The sieve analysis delivered the same results. Even if after a longer
operation phase hydraulic material properties slightly change, they
are expected to remain in the common range of variability and
uncertainties when describing unsaturated flow in natural media.
Thus the task is to calibrate both filters in a way that the parame-
terizations are valid for both and converge to one unique solution.

Inverse modeling for estimating soil physical parameters can be
done in multiple ways. The most straightforward approach is by
simply fitting modeled to measured data with an efficient numer-
ical solver that minimizes the discrepancy, i.e. the relative error or
misfit. This has, for example, been demonstrated by Zijlstra and
Dane (1996) for layered soils. However, the existence of multiple
equally acceptable parameterizations has to be taken into account.
Considering a certain degree of conceptual model uncertainty and
data inaccuracy, these optimal or close-optimal parameterizations
can hardly be sorted based on the fitting error alone. One way out
is to use a multi-objective framework while simultaneously mini-
mizing different types of relative errors or of other fitting criteria
(e.g. Tang et al., 2006; Mertens et al., 2006). Alternatively, addi-
tional information resources may be included in Bayesian frame-
works in order to decrease the number of equally probable
parameterizations (e.g. Zhang et al., 2006).

Special attention must be given to the solution algorithm, which
has to be capable of identifying ranges and correlations of accept-
able parameter settings. Local solvers used to minimize a relative
error function may be inappropriate to detect all suitable parame-
terizations. In case of numerous close-optimal or locally optimal
solutions, the given parameter space has to be carefully examined.
Repeated application of local solvers with different starting points
for the optimal search can help here, but despite the computational
efficiency of e.g. Multi-start Newton methods, their performance
Please cite this article in press as: Maier, U., et al. Calibration of hydraulic param
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and expressiveness is highly dependent on the specific problem.
In contrast to these local methods, however, more general, robust,
and preferable global optimization methods have been established,
most of these following heuristic concepts. Examples are Ant Col-
ony Algorithms (Abbaspour et al., 2001), the Shuffled Complex
Evolution Algorithm (e.g. Vrugt et al., 2003; Wöhling et al., 2008)
and numerous singular, hybrid techniques such as those presented
by Pan and Wu (1998), Lambot et al. (2002) and Iden and Durner
(2007).

Frequently, global search capabilities are achieved by includ-
ing stochastic search elements. This method yields algorithms
potentially less prone to getting stuck in local optima but more
computationally intense due to the less directed search. Re-
cently, focus has been set on increasing the robustness of global
search algorithms, in particular by including self-adaptive fea-
tures, which make the algorithm adapt to the specific properties
of the calibration problem. For example, by learning the model
response and thus the objective function complexity during an
iterative optimization procedure, the solution algorithm can
more efficiently investigate the parameter space and ideally de-
duce second-order information and sensitivities. An example is
the AMALGAM algorithm by Wöhling et al. (2008). In fact, self-
adaptivity is a feature inherent to a major variant of the family
of evolutionary algorithms, the evolution strategies. Recently,
Fan and Casey (2008) demonstrated the suitability of their sto-
chastic ranking evolution(ary) strategy for soil parameter identi-
fication. In our work, we employ the currently most widely used
variants, the so-called evolution strategies with covariance ma-
trix adaptation (Hansen et al., 2003). So far, inverse modeling
with this algorithm has successfully been conducted for a zero-
valent iron reactor model specification (Kouznetsova et al.,
2007) and calibration of gene regulatory network models (Hohm
and Zitzler, in press).

Evolution strategies are, similar to the more popular genetic
algorithms, evolutionary algorithms that simulate natural evolu-
tion in an abstract mathematical way. The idea follows a ‘‘sur-
vival-of-the-fittest” principle, iteratively testing and comparing
search points in the decision space (here model parameterizations)
based on their objective function values (their fitness). This is car-
ried out by algorithm-specific evolutionary operators that produce
in a generation-wise fashion sets of search points, which tend to
successively improve and converge to an optimal solution. In the
evolution strategy variant used here, the initial population of k
search points is chosen randomly (with uniform probability distri-
bution) and then separately evaluated. The next step, selection,
means favoring better candidate solutions, i.e. those l < k search
points with better objective function values, when creating the
next population. This simulates ‘‘survival-of-the-fittest” and is an
essential element for converging to an optimum. Subsequently,
operators such as recombination and mutation are performed to
diversify the search, thus escaping from potential local minima
traps. They produce a new set, a new population of search points,
which is similarly evaluated and processed as the previous one.
Each new population forms a new generation, until a certain
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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termination criterion is met. For the application here, the total
number of objective function evaluations is limited to a maximum
number.

The unique feature of CMA-ES is the mutation procedure. It is
carried out each generation after the best search points are se-
lected and, during the recombination step, their (weighted) centre
of mass is computed. By mutation, Gaussian noise is added, which
is determined by a correlated sample distribution that is continu-
ously adapted during the optimization procedure. More specifi-
cally, CMA-ES learns the pair-wise dependencies of the decision
parameters by updating a covariance matrix of the sample distri-
bution (Hansen et al., 2003). This way, it adapts to the structure
of the objective function and quasi exploits second-order informa-
tion. It is implemented in a way that this updating mechanism is
independent of the coordinate system, which makes this evolution
strategy an efficient and robust solver. For more details, the reader
is referred to Hansen and Ostermeier (2001) and Hansen et al.
(2003), who provide the entire algorithm and recommendations
for setting the algorithm specific control variables. Based on these
recommendations we obtain a quasi parameter-free optimization
algorithm that is auspicious for heterogeneous application fields
with always-unique problems such as those related to parameter
estimation in hydrological models. It can handle non-separable
and highly miss-scaled functions; applications in hydrology and
engineering so far have shown significant global search capabilities
even on multi-modal, non-smooth, discontinuous, ill-conditioned
and noisy functions (e.g. Bürger et al., 2007; Bayer et al., 2008,
2009).

The measured discharge time series of both basins show a cer-
tain degree of variation even under identical inflow conditions
(Fig. 3). This noise may be due to measurement errors and other
unknown internal or external influences. In order to minimize
the influence of noise during model calibration, both outflow
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Fig. 4. Spreading range and median discharge curves for case A (a) and case B (b).
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curves are cut into similar time periods with equivalent infiltration
protocols. For basin A, six sequential intervals with two separate
infiltration events each can be distinguished. The intervals are
super-positioned to obtain an interpolated average curve. More
specifically, the median line was chosen as most appropriate, since
it is least sensitive to extremes and outliers (Fig. 4a). This way, reli-
ability of the discharge time series is increased, and we obtain a
rather smooth curve that seems free of artifacts. For the basin A
case, the root mean squared error (RMSE) is minimized:

F7b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ð�Oi � PiÞ2

r
ð7Þ

The median curve is discretized into N = 240 equal time steps of
observations �Oi, which are compared to the simulated discharges
Pi at the same time points.

A similar procedure was applied for basin B. However, infiltra-
tion events here are not evenly distributed. After intervals of
350 min (5.8 h) and 370 min (6.2 h), respectively, the flow regime
shows rather distinct double peaks. For the total measurement
timeframe we obtain only three equivalent periods. As in case A,
this ensemble is superimposed and the median is computed. As
shown in Fig. 4b, the median denotes a heterogeneous discharge
trade-off with punctually high variations. The grey area demar-
cates the discrepancy of discharge values that is spanned by the
three curves. The most pronounced discrepancies can be observed
at the two major grey area peaks that appear early before the med-
ian. This reflects a limited reliability of overlays and median curve,
and in particular, apparent uncertainty in the peaks in terms of
time and height. It is hardly possible to account for this during
an automatic calibration. One way could be to put more weight
on the apparently relatively accurate curve declines. However, trial
tests showed that in this case the high peaks, which are important
features of the discharge time series, could not be satisfactorily
reproduced. One alternative option would be fitting to the (grey)
range (Fig. 4b) instead of the median. This has been tested and
found inappropriate, as the form of the measured curve was not
well reproduced visually.

As a compromise, minimization of residuals as for basin A was
chosen, with two modifications. First, a time tolerance was in-
cluded. Slight time shifts between median observations and simu-
lated discharge peaks cause significant errors when using RMSE
based fitting. However, Fig. 4b indicates that the exact time points
of these peaks are not known. In order to reflect this in the objec-
tive function, the observed median is relaxed by 6 min, reflecting a
value chosen according to the observed discrepancies. Modeled
discharges are compared to the median observed discharges in a
range of ±6 min and the minimum residual is taken. The second
modification was included after a number of trial calibrations. It
turned out that the solutions found with an RMSE based objective
function only had underestimated discharge peaks in common. To
put more emphasis on the peaks, a penalty is included which dete-
riorates model parameterizations with no peak higher than 0.7 L.
This value reflects the lowest median discharge peak as shown in
Fig. 4b. The resulting fitness function reads

F6b ¼max 1;
0:7 L
Ppeak

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
minð�Oi;�6 min � PiÞ2

r
ð8Þ

where the maximization term represents the penalty factor and
Ppeak denotes the highest modeled discharge peak.

Automatic calibration requires an interface between solver pro-
gram and simulation tool. The latter is iteratively called by the
optimization algorithm until reasonable agreement between mea-
sured and modeled values is achieved. An automated parameter
variation (APV) routine was programed that updates the MIN3P in-
put-files, executes the model, checks performance, and evaluates
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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the results in one loop. First the number, keyword names of all the
variable parameters, and their position in the input-file are pro-
vided from a user-defined list. Subsequently, parameter values
for each run are defined and written to the input-file, proceeding
in a loop as follows: (i) assignment of parameter values, (ii) update
of input-file(s), (iii) call of batch file: execution of MIN3P (and/or
additional external programs), (iv) check of model performance,
(v) evaluation of model output.

This routine can not only be used for sensitivity analysis, but
can also be coupled with any kind of parameter estimation tool
such as the technique used here. Within this work, APV is coupled
with a MATLAB based CMA-ES implementation that also involves
the objective function formulation. Interfacing with the APV is par-
ticularly useful in case of program instabilities or if MIN3P does not
converge for badly chosen parameter combinations. In such cases,
the objective function value is assigned a very high value as substi-
tute for processing model output. The selection mechanism of
CMA-ES causes the evolutionary search to be deviated away from
such unfavorable parameter settings.

The overall calibration procedure is as follows: the model is run
for the entire application period, and in order to diminish the role
of initial boundary conditions, only the last of the six or, respec-
Table 3
Initial parameter bounds and results of basin A model calibration. Best solution found as w
value FA are listed.

Basin A Input Output

Initialization FA = 0.00124 L (best solu

Kclay/sand (m/s) 1.0E�07 1.0E�04 7.01E�07
aclay/sand (1/m) 0.30 3.20 0.76
nclay/sand 1 10 2.7
Kgravel(8–16) (m/s) 0.005 0.80 0.0395
agravel(8–16) (1/m) 1 30 3.0
ngravel(8–16) 1 30 20.8

Table 4b
Initial parameter bounds and results of basin B model calibration including preferential flo
above best solution.

Basin B Input Output

Initialization FB = 0.1039 L (best solut

Kclay/sand (m/s) 3.9E�07 8.5E�07 8.22E�07
aclay/sand (1/m) 0.63 1.65 0.99
nclay/sand 2.1 6.8 4.0
j (m/s) 1.0E�10 1.0E�01 1.27E�07
wpf (m) 0.1 5.0 3.8
Kgravel(8–16) (m/s) 0.005 0.80 0.32
agravel(8–16) (1/m) 2.3 28.7 11.9
ngravel(8–16) 3.0 25.2 8.8

Table 4a
Initial parameter bounds and results of basin B model calibration assuming no preferentia
broad initial parameter bounds.

Basin B Narrow parameter bounds

Input Outpu
Initialization FB = 0.

Kclay/sand (m/s) 3.9E�07 8.5E�07 8.5E�
aclay/sand (1/m) 0.63 1.65 0.81
nclay/sand 2.1 6.8 3.4
Kgravel(8–16) (m/s) 0.005 0.80 0.8
agravel(8–16) (1/m) 2.3 28.7 27.3
ngravel(8–16) 3.0 25.2 5.6
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tively, three modeled periods is taken for the comparison with
the measured median. A number of trial runs were performed to
test potential calibration outcome, performance of solver and, as
discussed above, potential modifications to the objective function.
Based upon these trials and own expertise, ranges were defined for
the parameters subject to calibration (see Tables 3–5). As demon-
strated subsequently, they are modified in the course of the cali-
bration procedure. The basin models were calibrated separately
as test cases to assess CMA-ES performance and to reveal the indi-
vidual best fit parameter configurations. After this, both models
were calibrated together to obtain the overall best compromise
of parameterization.

Due to the low computation time (a few seconds) for one MIN3P
model run, it was possible to conduct several repeated applications
of the automatic calibration. This is desirable in view of potential
multi-modality of the objective functions. Despite the global
search capabilities of the CMA-ES, it can get stuck in local optima,
and thus restarts are recommendable to increase the probability of
detecting the global optimum (e.g. Bayer and Finkel, 2007). How-
ever, in such parameter estimation problems, which commonly
are ill-posed and based on inaccurate data, not (only) the best fit-
ting model configuration is of interest. The question is which
ell as parameter ranges for a tolerance of 10% and 50% above best objective function

tion) FA = 0.00136 L (+10%) FA = 0.00186 L (+50%)

6.4E�07 7.0E�07 3.9E�07 8.5E�07
0.74 1.11 0.63 1.65
2.6 4.0 2.1 6.8
0.007 0.80 0.005 0.80
3.0 3.1 2.3 28.7
17.1 22.6 3.0 25.2

w. Best solution FB and parameter ranges are shown for tolerances of 10% and 17.5%

ion) FB = 0.114 L (+10%) FB = 0.122 L (+17.5%)

4.0E�07 8.5E�07 4.0E�07 8.5E�07
0.81 1.29 0.63 1.29
2.9 5.6 2.1 5.6
4.54E�08 8.47E�07 2.84E�08 6.16E�05
2.7 4.3 0.1 5.0
0.006 0.40 0.005 0.71
11.4 30.0 2.9 23.0
6.8 13.0 1.0 23.0

l flow. Objective function values FB and parameter settings are shown for narrow and

Broad parameter bounds

t Input Output
1507 L Initialization FB = 0.124 L

07 1.0E�07 1.0E�05 1.08E�06
0.30 3.20 0.61
1 10 2.1
0.005 0.80 0.005
1 30 23.5
1 30 15.4

eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),



Table 5
Initial parameter bounds and results of combined calibration of basin A and B models including preferential flow (in B). Best solution FAB yields individual fits of FA = 0.00162 L and
FB = 0.124 L. Parameter ranges are listed for tolerance of 5% above best solution.

Basins A & B Input Output

Initialization FAB = 2.0187 (best solution) FAB = 2.1 (+5%)

Kclay/sand (m/s) 4.0E�07 8.5E�07 4.36E�07 4.0E�07 4.5E�07
aclay/sand (1/m) 0.80 1.29 0.82 0.81 0.91
nclay/sand 2.4 5.6 2.7 2.4 2.8
j (m/s) 2.84E�08 6.16E�05 1.1E�06 2.6E�07 9.3E�06
wpf (m) 0.1 5.0 3.1 1.3 4.4
Kgravel(8–16) (m/s) 0.005 0.71 0.043 0.008 0.59
agravel(8–16) (1/m) 2.9 23.0 9.7 8.4 22.9
ngravel(8-16) 3.0 23.0 8.6 4.5 9.4
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assembly of the multiple parameter settings yields acceptable
solutions? This has to be ultimately decided by visual inspection,
but during the evolutionary search of multiple restarts, numerous
model parameter settings were assessed. In the following section,
the information obtained from these ‘‘evolution paths” will be also
exploited for identifying acceptable sub-optimal parameter config-
urations as well as for potentially existing correlations.

Application and discussion of results

Calibration of basin A model

In the first step, only the model for basin A was calibrated. The
measured time series are relatively regular and spawn a uniform
median that has a high chance of being reproduced by the model.
The governing, unknown parameters for the Van Genuchten equa-
tions are hydraulic conductivity, K, and the empirical coefficients, a
and n. These are estimated for the main element of the wetland,
the clay/sand layer, as well as for the 8–16 mm gravel cover. Dur-
ing the optimization, the value bounds of these parameters are set
according to Table 3. They are implemented in the optimization
procedure according to the box constraint handling method pro-
vided by Hansen et al. (2009). For log-scaled parameters such as
hydraulic conductivities, K, the log(K) values are subject to optimi-
zation in order to reflect underlying physical logarithmic relation-
ships also in the mathematical problem formulation.

The CMA-ES is specified according to Hansen and Ostermeier
(2001) and Hansen et al. (2003), which recommend a minimum
population size of k = 4 + 3 ln(N) and a parent size of l = k/2.
Parameter N denotes the problem dimension. Both k and l are
rounded to the next lower integer. Accordingly, for the N = 6 un-
knowns, a population size of k = 9 and a parent size of l = 4 is used.
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Fig. 5. Discharge curve of best fit for case A (FA = 0.00124 L). Combined calibration
with case B model yields dotted curve (FA = 0.00162 L, FAB = 2.0187).
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In standard terms, the algorithm is specified as (4,9)-CMA-ES. We
set a maximum generation number of 70, yielding algorithm ter-
mination after 630 objective function evaluations. The CMA-ES
was applied 20 times in total, with different random seed initial-
izations of the search points of the first generation.

The discharge curve of the overall best solution is depicted in
Fig. 5. It conforms well to the median and also visually reproduces
the trend of field measurement time series. Accordingly, the mini-
mum found RMSE is only FA = 0.00124 L. On the average, already
after 330 objective function evaluations a solution of
FA = 0.00124 L + 50% = 0.00186 L was detected during the 20
CMA-ES runs. Exemplary inspection of modeled discharge curves
within a range of up to 50% higher than the minimum RMSE re-
vealed that the bulk is still within the grey area of variation. Hence,
the corresponding parameter combinations can also be considered
acceptable solutions.

When setting a tighter criterion of 10% above the minimum
RMSE (FA = 0.00136 L), only seven of the 20 calibration runs pro-
vided solutions, whereas the other runs failed or had not yet con-
verged. Therefore, improvement of the optimization procedure
would be possible by formulating a more appropriate termination
criterion for the CMA-ES. In fact, due to the stochastic elements of
the search, each run takes its own ‘‘evolution path”, and it is not a
priori possible to determine the ideal time to stop the algorithm.
One advancement, for example, would be the inclusion of a mea-
sure that continuously evaluates the progress and convergence
speed. When the fitness is no longer improved or only at a slow
rate, then the procedure would be stopped. However, underlying
termination criteria would have to be specified, which is delicate
without insight into the optimization problem itself and without
knowing the true optimal solution. In view of these obstacles, we
defined an empirical maximum number of iterations, as is common
in related applications. While the limit of 630 iterations may cause
premature termination before sufficient convergence, this result
may be compensated by applying multiple restarts.

In order to further examine the performance dynamics of CMA-
ES, Fig. 6 plots the median convergence curves with 10% and 90%-
confidence intervals on a log scale. The confidence intervals span a
remarkable range, reflecting the variability of different individual
CMA-ES runs applied to the same problem. Overall, the median de-
notes a fast average convergence with only slight objective func-
tion improvement after the first half of the search.

For this parameter estimation problem, it can be assumed that
the solution with FA = 0.086 L is very close to the global optimum.
This is substantiated by the respective good visual fit (Fig. 5). Con-
sidering that even RMSEs of up to 50% higher yield satisfactory fits,
the CMA-ES is very efficient for this type of problem. Only about
every third CMA-ES run converged very close (+10%) to the mini-
mum, which may be a sign of multi-modalities of the objective
function. For comparison and also for the purpose of more insight,
an alternative solution algorithm, the common Nelder–Mead
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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method (Nelder and Mead, 1965), was applied. This method
basically represents a local solver and failed to converge to this
minimum in most of the trial runs performed (using random ini-
tializations). We interpret this as an indication of significant objec-
tive function complexity and the existence of local optima.

The best discovered parameter combination is listed in Table 3.
The calibrated hydraulic conductivity below 10�6 m/s corresponds
to the properties of a rather fine or silty sand and is surprisingly
low considering the materials used. Its value lies close to the lower
boundary of the expected parameter range. This may be explained
if one takes into account that the facility looks back on eight years
of operation in wastewater cleanup and has experienced the effects
of settling of suspended solids or colloids as well as the root
growth and decay of the P. australis plants and organic matter
accumulation, which all may lead to reduction of K. The crushed
expanded clay pellets and surrounding sand may also form aggre-
gates of high water retention capacity and low permeability, which
would be the favorable zones of water percolation at low satura-
tion. If, apart from that, distinct zones of high macroporous perme-
ability do exist which are open to flow only at high saturation, they
could, unfortunately, not be elucidated by this conceptual model.

The clay/sand Van Genuchten coefficients are relatively low, as
can principally be expected for clay-based materials. In contrast,
they are (much) higher for the overlying gravel. The gravel con-
ductivity is estimated to be approximately K = 0.04 m/s, repre-
senting also a realistic value. Aside from this best solution, we
also sampled all parameter configurations of satisfactory fit 10%
and 50% higher than the lowest RMSE which had been detected
during the evolutionary search. In detail, a total of 132 solutions
were found for the 10% criterion and 1816 for the 50% criterion.
The individual parameters of these configurations span substan-
tial ranges (Table 3), which are relatively broad for the gravel
parameters. This is a sign of low sensitivity of the gravel specifi-
cations, which may be attributed to its thin layer width of just
5 cm. In contrast, even if the optimality criterion is relaxed and
the 50% threshold is set, the K values of the clay/sand mixture re-
main below 8E�7 m/s.

The set of sub-optimal solutions detected during the calibration
procedure can be further exploited for the purpose of examining
potential parameter correlations. For both thresholds, we com-
Please cite this article in press as: Maier, U., et al. Calibration of hydraulic param
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puted the Pearson correlation matrices and inspected those param-
eter couples with significant correlations (correlation coefficient
absolute value above 0.75). From the 15 couples, four were found;
the correlation plots can be seen in Fig. 7. Please note that using
this statistical inspection method is only a straightforward vehicle
for extracting further information and obtaining indications from
the numerous parameter settings tested. This potential is com-
monly overlooked and likely helpful for further interpretation of
the parameter estimation problem solution. For exact determina-
tion of correlations, random samples from the search space would
be necessary. Here biased samples are taken that depend on the
algorithm’s search history. Nevertheless, statistical representative-
ness is improved by considering multiple CMA-ES runs. In this
sample case, the correlations already evolved after only half (10)
of the CMA-ES runs. Although the CMA-ES is ideally suited for this
approach, as this search algorithm is based on dynamic learning of
parameter correlations, correlations can be analyzed within any
other (stochastic) search procedure. Furthermore, the computed
correlations are highly dependent on the defined threshold, since
the threshold simply determines which local solutions are accept-
able. This dependency has to be considered when setting a certain
acceptance limit, but its role could also be further inspected. This
will be done subsequently when we have a closer look at the four
major correlations.

The Van Genuchten coefficients a and n provide good agreement
to the observed field data and are highly positively correlated.
Within the range of fit values shown in Fig. 7c, they yield high aque-
ous saturations of the porous medium for the occurring range of
pressure heads in combination with either only small changes in
relative permeability for the main layer. This weak sensitivity on
pressure heads and thus on flowthrough rates seems to be crucial
to reproduce the modest changes and smooth curves of discharge
rate observed in filter A. In preliminary runs before fitting, generally
much higher fluctuations were observed for most parameter com-
binations, unless they led to much longer delay of discharge. This
implies as well that high water contents within the clay/sand mix-
ture seem to be a prerequisite for filter outflow reproduction. Also
the Van Genuchten parameters of the gravel seem to be correlated
to each other. The other cross-correlations between the parameters
of the different materials, between the hydraulic conductivity of the
clay/sand mixture and the Van Genuchten parameters of the over-
lying gravel, are obvious, but can not be interpreted ad hoc. Even so,
they appear to be significant, at least within the given tolerance
range. However, in case of a more strict tolerance by using the
10% criterion, they tend to disappear.

As to be expected, the fitted soil hydraulic functions lead to only
a slight decrease of aqueous saturation within the main layer down
to about 70% if pressure head drops to �1 m. In the gravel, the sat-
uration quickly drops to values close to residual saturation if
w < �0.5 m. In the same manner, relative permeability decreases
by less than an order of magnitude in the clay/sand mixture for
w < �1 m and by several orders of magnitude for the gravel.

For the parameter ranges that were able to reproduce the mea-
sured outflow behavior, water contents within the main filter layer
mostly remain close to saturation. Unfortunately, no measured val-
ues of water content within the filters are available, so this finding
can not be proven. However, the good performance of the filters in
oxygen demand removal indicates at least temporarily sufficient
aeration of the filter. This suggests that, for example, a non-equilib-
rium water retention model using dual domain would provide a
suitable alternative. Nevertheless, the given findings can be attrib-
uted to the slow velocity part of the pore space, indicating that a
connected finer part of the pore space exists, which remains at rel-
atively high water saturation during operation of the filter. Appar-
ently, the model concept used here is appropriate for simulating
these conditions.
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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Calibration of basin B model

As for basin A, hydraulic conductivities and Van Genuchten
parameters of the clay/sand layer and of 8–16 mm gravel were
estimated. The gravel here is both on top and bottom of the main
clay/sand compartment (Fig. 1). The findings from filter A calibra-
tion already provide insight into possible parameter ranges of the
same material, and thus the initial parameter bounds for the cali-
bration procedure can be adjusted accordingly (Table 4a and b).
The parameter ranges computed for FA < 0.00186 L were chosen
in particular. This threshold is 50% above the minimal error of
the best basin A fit and spans a range of parameter configurations
still acceptable after visual inspection. As in the previous case,
CMA-ES was used for automatic fitting; however, even repeated
applications could not deliver satisfactory solutions. In principle,
this could indicate that the search algorithm is not suitable. How-
ever, numerous test runs, also with other optimization techniques,
and manual tuning could not provide better model fit. Therefore
the limitation is thought to be the conceptual model that can not
fully reflect the actual conditions.

Minimum error assuming no preferential flow turned out to be
nearly two orders of magnitude higher than for the A case
(FB = 0.1507 L, Table 4a). The best fit after 20 CMA-ES runs, which
produced rather similar results, is depicted in Fig. 8. The discharge
time series of the basin B are relatively irregular and show distinc-
tive peaks. Major discrepancies are due to inappropriate reproduc-
tion of these peaks even though the objective function is
formulated in a way that a 6 min deviation of the median observed
values is accepted (Eq. (8)).
Please cite this article in press as: Maier, U., et al. Calibration of hydraulic param
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As the observed peaks could be a sign of draining macropores,
preferential flow conditions are included in the model conceptual-
ization for the B case. Accordingly, two more fitting parameters
have to be considered, scaling factor kappa j and pressure thresh-
old wpf (Eq. (6)). Similar to the treatment of hydraulic conductivity,
the logarithm of j is optimized. The population size is increased
according to the new problem dimension of N = 8, and the (5,10)-
CMA-ES is used for 70 generations (700 objective function evalua-
tions) per application. After 20 randomly initialized applications,
the overall best solution gave an error of FB = 0.1039 L (Table 4b),
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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which is still high but about 30% lower than for the model set-up
without preferential flow. Fig. 8 depicts the best modeled dis-
charge curve, which complies well with the median observations.
Although the major curve characteristics are reproduced in a much
better way, the peaks are still below the estimates. Please note that
none of the solutions with up to 10% worse fit than the best param-
eterization show peaks of higher than 0.6 L. Even the penalty ap-
proach for too low peaks could not force more pronounced inclines.

An additional indication for the two low simulated peaks is gi-
ven by the high peaks somehow erratically occurring after the pro-
longed dry periods (discharge declines). These can be hardly
explained by pressure head exceeding a threshold, when hydraulic
functions in equilibrium distribution over the pore space are as-
sumed. A formulation that accounts for either hysteresis of wetting
conditions or a non-equilibrium dual porosity model might be
more successful in their reproduction.

Detailed inspection of results so far and from further manipu-
lated objective functions indicated that the most problematic ele-
ment for appropriate fitting is the last phase after 22 h. Here,
multiple abrupt discharge peaks occur that can hardly be simu-
lated. The discharge peaks computed in this phase tend to be anti-
cyclic. Due to the significant error from misfit, automatic
calibration tends to favor smoothed trade-offs. More pronounced
preferential flow would yield more consistent agreement with
the earlier period, but disproportionally augment the error in the
late phase. The reason for this difficulty could be a principal limi-
tation of the model conceptual model of preferential flow. How-
ever, in view of the temporal discharge variations, which occur
despite similar conditions in the underlying sequential experi-
ments, the reliability of observed discharge values may be low.
These complications are not observed in case A, where the infiltra-
tion is carried out more moderately and where more repeated
experiments could be averaged. Discharge uncertainties of case B
can be expected to be even higher than those spanned by the min-
imum/maximum measurements of the three experiments. None-
theless, a higher tolerance of ± 6 min for the fitting procedure
seems to be too speculative. In order to keep the parameter estima-
tion problem as well-posed as possible and for the purpose of
expressive results, no further modifications of the problem formu-
lation are considered. Overall, the peaks of calibrated models tend
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Fig. 9. Median convergence curve for calibration of model for basin B with
confidence intervals. As reference, fitness values (calibration errors), FB = 0.104 L
and FB = 0.122 L are shown.
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to occur slightly earlier than the median observations. Since also
the major measurement peaks are slightly shifted, this does not
represent a shortcoming.

As for the basin A results, we distinguish a strict and more mod-
erate threshold of maximum error function values (Table 4b),
which was set 10% (0.114 L) and respectively 17.5% (0.122 L) high-
er that the best FB. These limits are defined after visual inspection
of the preferential flow solutions and, due to the worse fit, they are
relatively more stringent than for the A case. After 20 repeated
runs, the CMA-ES generated heterogeneous results, with several
different optimized parameter configurations.

The convergence curves of best RMSE solutions for the 20 CMA
trials are examined in Fig. 9. As for the case A results (Fig. 6), the
different CMA trials have unique trends, but generally reach a fast
improvement in the early stage of the search. On the average, solu-
tions for FB 6 0.122 L are found roughly after the first half of the
search (ca. 380 objective function evaluations). Again, the confi-
dence intervals do not widen on the log scale, which indicates that
although individual CMA-ES runs may follow different search
paths, the solutions found are of (increasingly) similar quality.
The trends in Fig. 9 indicate that later termination of the CMA-ES
after further objective function evaluations could increase the suc-
cess rates. However, in this study multiple restarts are preferred to
time-consuming fine-tuning in order to explore the variety of
equally acceptable parameter configurations.

The optimization algorithm performance was not ideal, with 13
runs that yielded solutions of min(FB) 6 0.122 L, and only five with
fits 60.114 L. This may be interpreted as a sign of a comparatively
more complex objective function and with (further) multi-modal-
ities. In particular, the preferential flow conditions introduce addi-
tional correlations to the model parameters. This can be seen by
visualization of the individual parameter correlations (Fig. 10).
The same procedure as in the A case has been applied: all tested
parameter configurations with objective function values that fall
within the given thresholds are sampled. Pair-wise correlations
are only significant between Van Genuchten parameters of the
clay/sand mixture and between the preferential flow parameters
(Fig. 10a). For the first, the same interpretation as for case A is sug-
gested. Detection of the same type of correlation as in the previous
experiment also confirms expressiveness and robustness of the
search algorithm.

Correlations to gravel-specific parameters, as found for case A,
could not be identified here. This does not necessarily mean that
correlations do not exist, since the underlying sampling procedure
is only a rough inspection. Moreover, in this case, the higher dis-
crepancies between modeled and observed discharges could hide
potentially further existing correlations. When water drains from
a fine-grained material into a coarser one, water pressure may be
insufficient to wet the larger pores associated with the coarser
grains. This capillary barrier effect was observed by distinctly com-
paring simulations with and without drainage layer below the
clay/sand core. This behavior is described by the more rapidly
declining relative permeability of coarser material according to
the Van Genuchten model. This connection, however present, does
not appear as a visible correlation between fit parameter combina-
tion for filter B, where the 8–16 mm gravel is used as immediate
layer underlying the main filter.

The correlation between the two preferential flow parameters is
relatively trivial (Fig. 10b). This can be easily deduced from the
Mohanty equation (Eq. (6)) which is composed of a difference of
pressure heads within an exponential function. Rearranging leads
to factor j times some extra exponential function of wpf, which
may be lumped together into just a single parameter. Therefore,
the findings from the solution procedure exactly match the theory.

The Van Genuchten parameters of the clay/sand mixture, which
appear to be some of the most sensitive parameters, have similar
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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correlations as for case A (see Figs. 6 and 8). Their best fit values
tend to be higher for the actual case B. In fact, lower values
(a < 0.8 m�1, n < 2.4) are not favorable due to their effect on the
major discharge declines (3 h–10 h, 15 h–21 h). The latter tend to
be too steep for small values with significantly underestimated dis-
charge minima. This aspect complicates efforts to derive an overall
valid parameterization, although close-optimal a/n pairs seem to
exist which comply with both cases. Furthermore, the best fit
hydraulic conductivities of the sand/clay mixture are analogous.
Highest inconsistencies can be found when comparing the gravel
specifications, but the parameter ranges of close-optimal solutions
(e.g. FA 6 0.00186 L, FB 6 0.122 L) are broad. This may be inter-
preted as their relatively low sensitivity, which seems realistic con-
sidering the low portion of gravel.

In an extra trial, we extended the initial parameter ranges for
the calibration and neglected preferential flow. This was intended
to determine whether alternative model parameterizations exist
that are capable of reproducing the observations, assuming that
no experience from the filter A can be utilized. In fact, as listed
in Table 4a, a best fit solution with FB = 0.124 L was found. Main
feature is a hydraulic conductivity of K = 1.08E�6 m/s, which is
slightly higher than that of the best fit when including preferential
flow (K = 8.22E�7 m/s). This may indicate that preferential flow
paths exist, but not extensively, and could be approximated by a
slightly increased hydraulic conductivity. A further typical prop-
erty of this approximation is a rather low value of a = 0.61 m�1,
which yields relatively steep discharge declines.

Combined calibration of basins A and B models

The findings from basin-specific separate calibration can be
combined to derive overall valid ranges for the individual model
parameter values. However, particular parameter configurations
that are acceptable for both models can only be determined by
simultaneously calibrating both models. This can be done by min-
imizing the weighted sum of both objective functions (Eqs. (7) and
(8)). The weights here are chosen based on the individual best fits.
This means, the closer an individual model is to its optimal fit, the
better:

FAB ¼max 1;
FA

0:00186 L

� �
þmax 1;

FB

0:122 L

� �
ð9Þ
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Here we selected as ‘‘optimal fit” thresholds those objective func-
tion values which had been established as maximal acceptable
(50% above best solution for basin A; 17.5% for basin B). The fitness
value of FAB is dimensionless and should denote good fits for both
models at values of 2. The initial parameter bounds are set accord-
ing to the overlaps between the model-specific parameter ranges
(Table 5). In order to avoid too steep discharge declines of the case
B simulations, the lower bound of aclay/sand for the sand/clay mixture
was increased to 0.80 m�1 and the other Van Genuchten coefficient
was limited by nclay/sand 6 2.4.

After 20 CMA-ES applications, none of the optimized solutions
yielded objective function values of FAB = 2. This means that,
within the given tolerances for each curve fit, there is a low
chance that a solution exists at all. However, these tolerances
are arbitrarily defined after visual inspection of the modeled dis-
charge curves. If they are slightly relaxed and e.g. parameteriza-
tions found with FAB < 2.1 are allowed, then a total of 447
acceptable solutions can be sampled. Such solutions are provided
by only six of the 20 CMA-ES runs, indicating a moderate suc-
cess rate of the optimization algorithm. Overall, the limiting case
appears to be basin B, for which none of the 447 parameteriza-
tions defer a model-specific fit below the given boundary
(FB 6 0.122 L). In contrast, some of the solutions have a case A
fit of FA = 0.00162 L, which lies between tolerance FA 6 0.00186 L
and best fit found FA 6 0.00124 L.

The best combined solution is very close to the desired mini-
mum and yields FAB = 2.02 (see Figs. 5 and 7). It is characterized
by a hydraulic conductivity of K = 4.36E�7 m/s, which is small
and is at the lower boundary of the given value range. The Van
Genuchten coefficients (a = 0.81 m�1, n = 2.4) are also determined
close to their minimal values, which originally have been defined
to circumvent too steep discharge declines for case B. Below the in-
creased tolerance limit, the sand/clay parameterizations vary only
slightly. Furthermore, within these small value ranges, still positive
correlations between the Van Genuchten coefficients can be de-
tected. Compared with the sand/clay parameters, the values for
the gravel parameters span a wide range and, as expected, appear
to be much less sensitive. The combined calibration narrows in
particular the value range of coefficient n to its lower part
(4.5 6 n 6 9.4), which has been also prioritized during case B cali-
bration. Here, the negative correlation to the clay/sand mixture K
and the gravel, as previously perceived for basin A alone, are
eters for large-scale vertical flow constructed wetlands. J. Hydrol. (2009),
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conserved. Apparently, the final gravel specification is constrained
by interplay between both models.

Combined calibration confines also the preferential flow param-
eters, which are only estimated for the basin B model. Their value
ranges are 1.1E�6 6 j 6 2.6E�7 and 1.3 m 6 wpf 6 4.4 m, which
are significant. However, as expected and revealed for case B alone,
they are still strongly correlated.

Conclusions

Simulating the processes in constructed wetlands is a delicate
task, since appropriate model parameterization is not straightfor-
ward. Even if their design is well known and individual material
properties are assessable, the always unique field conditions and
noisy measurements hamper a perfect process-based reproduction
of observations in wetlands. Thus, as is common in vadose zone
models, related parameter estimation problems can be ill-posed
and involve insensitive parameters. Examining and interpreting
these relationships is crucial to avoid a deterministic and stiff black
box model. However, no general methodology has been available
so far. The solution procedure for fitting simulated to observed
data must be emphasized, and a sequential approach solving sep-
arated sub-problems must be preferred to a crude all at-once tac-
tic. The study site of this work, the Langenreichenbach basins, is
ideally suited for the development of a strategic parameter estima-
tion concept. The prevailing conditions are well examined, despite
common measurement errors and the inability to exactly recon-
struct the entire hydrological system. The presented procedure
capitalizes on a robust optimization algorithm, namely the evolu-
tion strategy, which acts as unspecific and efficient global solver
for any objective function type and modification considered.

By applying two different experiments with two soil filters that
are composed of the same materials, it was possible to substan-
tially narrow the crucial material parameter values. MIN3P models
were set-up and case-specific fitness functions were formulated in
order to maximize the fit between observed and simulated bottom
discharges of the filters. Separate calibration of each filter model
yielded insight into potential parameter ranges and existing corre-
lations. The methodology used is straightforward: the optimization
routine is restarted several times and, from each run, close-optimal
solutions are sampled. Evolution strategies are stochastic global
solvers that explore the parameter space, with highest exploration
close to the solution they converge. They certainly do not deliver a
statistical inspection of sample solutions. However, statistical
expressiveness can be easily improved by combining the informa-
tion from multiple restarts. For the exemplary field study, several
parameter correlations have been detected, of which some are
clear, but others certainly not intuitive. In fact, knowledge about
potentially existing correlations is crucial for handling ill-posed
problems such as those common in vadose zone model parameter
estimation. We used the lessons learnt from separate filter model
calibration to constrain the combined calibration. Objective func-
tions were adjusted to stress calibration objectives and to respect
specific measurement conditions. The final material parameters
work for both models, and even if valid in only narrow ranges,
the still carry mutual correlations, like the Van Genuchten coeffi-
cients of the core clay/sand layer.

A main contribution of this work is the introduction of the CMA-
ES optimization algorithm into vadose zone inverse modeling.
There is definitely potential for further applications, especially
for complex and multidimensional objective functions. The num-
ber of hydraulic model runs per optimization can be kept moder-
ate, and we demonstrated that multiple restarts do not only
increase the success rate, but can also be exploited for a robust sta-
tistical interpretation. For the sake of advancement, population
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size could be increased each new CMA-ES run, as done by Hansen
et al. (2009), in order to improve the success rate on the expense of
more hydraulic model runs. This could be particularly favorable if
more focus is set on finding one global optimum instead of a set of
potential close-optimal solutions.

Room for improvement definitely exists for the model concept
when simulating the preferential flow conditions in filter B. The
considered Mohanty approach is computationally efficient and a
clear improvement compared to ignoring draining macropores.
However, the outflow peaks were only partly reproduced and con-
tinuously predicted below the observations. Generally, the success
of the calibration appears to be constrained by the equilibrium
(single phase) conceptual model of preferential flow. The results
of the calibration indicate that a more sophisticated preferential
flow model – such as a dual permeability approach – is likely to
provide an even better description of the flow response to the load-
ings. This will be subject to future work.
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